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Solve the differential equation

db:\‘ + Sdm\ +6x=2" (t=0)
dr* dr

subject to the initial conditions x =1 and dx/dt =0 at r = 0.

Solution  Taking Laplace transforms

yj{d";"} + 5?/{‘*—‘} + 6L} = 2%
dr- dt

leads to the transformed equation

152X (s) — sx(0) — (O)] + 5[sX(5) — x(0)] + 6X(5) = —i |

s
which on rearrangement gives
N 2 .
(5" + 55+ 6)X(s) = —1 + (s + 5)x(0) + x(0)
s+
Incorporating the given initial conditions x(0) = | and %(0) = 0 leads to
) 2
(s +5s+6)X(s)=—— +s5+5
s+1

That is,

2 s+5
+

X(s) =
s+ D+ +3) (s+3)(s+2)

Resolving the rational terms into partial fractions gives

2 3
X(s) = S + 1 + _ 2
s+1 s+2 s+3 s+2 s+3
| i 1

+
s+1 s+2 s+3
Taking inverse transforms gives the desired solution

x=e¢+e V- 1 =0)

In principle the procedure adopted in Example 11.23 for solving a second-order
linear differential equation with constant coefficients is readily carried over to higher-
order differential equations. A general nth-order linear differential equation may be
written as

d”.X' d”ﬁld\’

u de" ta,- d,n—l

+...taux =ult)y (@ =0) (11.18)
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Example 11.24

Solution

where ,, a,_,, . . ., a, are constants, with ¢, # 0. This may be written in the more con-
cise form
qg(D)x(t) = u(t) (11.19)

where D denotes the operator d/dr and ¢(D) is the polynomial
gDy = a D
r=0

The objective is then to determine the response x(¢) for a given forcing function u(t)
subject to the given set of initial conditions

d/' -
D'x(())=[ *} —¢ (r=0,1,...,0-1)
de” |
1=0
Taking Laplace transforms in (11.19) and proceeding as before leads to
X(s) = P(s)
4(s)
where

n-1 n

pls) =U(s) + Zc,. zal.sifr-l

r=0 [=r+l

Then, in principle, by taking the inverse transform, the desired response x(t) may be
obtained as

x(t) = i’"{&}
qls)

For high-order differential equations the process of performing this inversion may prove
to be rather tedious, and matrix methods may be used as indicated in Chapter 6 of the
companion text, Advanced Modern Engineering Mathematics.

To conclude this section, further worked examples are developed in order to help
consolidate understanding of this method for solving linear differential equations.

Solve the differential equation
d’x
dr

d
+6d—x+9,\':sinr (t = 0)
t

subject to the initial conditions x =0 and dx/dr=0at 7= 0.

Taking the Laplace transforms

2, .
y{—d—%} + 653{(1—"} +9S4x) = L{sint)
de de

leads to the equation

[s°X(s) — sx(0) — X(0)] + 6[sX(s) — x(O)] + 9X(s) = —17

s7+
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ﬁmple 11.25

Solution

which on rearrangement gives

(57 + 65 + NX(s) =

+ (s + 6)x(0) + x(0)

241
Incorporating the given initial conditions x(0) = (0) = 0 leads to

1

X6 = e 13

Resolving into partial fractions gives

| 1 1 s
X(s) == + L + 2= -2
) NVgr3 Wis+3)2 P24 Y2y
that is,
1 1 | s
X(s :_i—+—‘—[—} + 22— -2
() Vg3 Ol P2+l Vsiad

Taking inverse transforms, using the shift theorem, leads to the desired solution
x(t) = eV + eV + Sesint — cost (1= 0)
Solve the differential equation
dix d’x dx
L{‘f‘S‘d 17— +13x =1 ([?0)
dr de* dr

subject to the initial conditions x = dx/df = 1 and d’x/dt* =0 at r = 0.

Taking Laplace transforms

3, 2
fl’{d—:} + sy{g—f} + 17&5{2} +13%0x) = £{1)
dr de- dt

leads to the equation

5'X(s) = 57x(0) — 5%(0) — ¥(0) + 5[5°X(s) — sx(0) — ¥(0)]
+ 17[sX(s) = x(O)] + 13X(s) = é
which on rearrangement gives
(57 + 557+ 17s + 13)X(s) = é + (574 55 + 17)x(0) + (s + 5)4(0) + ¥0)

Incorporating the given initial conditions x(0) = £(0) = 1 and ¥(0) = 0 leads to
s 657+ 225 + 1

X(s) =
O = s+ 1757 13)

Clearly s + 1 is a factor of s* + 552 + 17s + 13, and by algebraic division we have

3 24225 + 1
X(s) = s+ 6s )+ s
s(s + D(s=+ 45+ 13)
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Resolving into partial fractions,
' 3
L 8 445
X(S) — 13 + 5 . (% . S+ 7
s o5+l s+ 45+13
_ ﬁ N s L 44(s + 2) = 27(3)
s o5+l Y (5422432

Taking inverse transforms, using the shift theorem, leads to the solution

() =5+ %e -

u
[$h]

e (44 cos3t—27sin3H (= 0)

=

Using Laplace transform methods, solve for + = 0
the following differential equations, subject to
the specified initial conditions. (Readers are

encouraged to check their solutions using an

appropriate software package.)

dx 5
(a) — +3x=e
) dr

dx . .
(b) Sd—‘ —4x =sin2sr subjecttox=<atr=0
; 3
v dx
© L5 g
dr= dr

dx
subject to x =0 and d_\ =0atr=0
!

&’y
d -
@ =

dy

ds

+2

+v=4cos2

iy
subject 1o v = 0 and (d—":zauzo
{

2
‘x d',
@ X 3% o g
ar- dt
. dx
subject tox=0and — =1 at+r=0
de
SRR N
de= dt

d
subject to x = 4 and o =-Tatt=0
t

d'x
dr?

dx .
4+ — —2x =5e'siny
ds

dx
subject to x = | and H\— =0atsr=0
!

subjecttox=2atr =0

d’y
dr?

dy
+ 2 3y =3

h
= dr

dy
subject to y =0 and —l}— =lat(=0

dr
d’x
dr?

o
dr

Far =1

it

subject t0 X = 3

()

2
d-x

k
o dr?

+ 8%‘1 + 16x = 16sindr
!

. X
subject 1o x =—+ and E.,..

2 + lz-d—); +4y
dr- dt

9 P

dy

dt

)

subject to y = 1 and

xS
(m) RTERTE dr*'#

PR

subject to x = 0,

dix

A Nde
P i

+
der de

subject to x =0, “

(n)
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11.3.5

Solution

Simultaneous differential equations

In engineering we frequently encounter systems whose characteristics are modelled
by a set of simultaneous linear differential equations with constant coefficients. The
method of solution is essentially the same as that adopted in Section 11.3.3 for solving
a single differential equation in one unknown. Taking Laplace transforms throughout,
the system of simultaneous differential equations is transformed into a system of simul-
taneous algebraic equations, which are then solved for the transformed variables;
inverse transforms then give the desired solutions.

Solve for t = 0 the simultaneous first-order differential equations

X d y
R Y A (11.20)
dt dt
PR (11.21)
de dt

subject to the initial conditions x=2and y=1at¢=0.

Taking Laplace transforms in (11.20) and (11.21) gives
]
s+1

3

8

sX(8) — x(0) + sY(s) — y(0) + 3X(5) + 3Y(s) =

2[sX(s) — x(M] + sY(s) — v(0) + X(s) + Y(s) =

Rearranging and incorporating the given initial conditions x(0) = 2 and y(0) = 1 leads to

(54 5)X(s) + (s + V() = 3 4 —— = 22+ 9 (11.22)
s+1 s+ 1
(25 + DX(s) + (s + DY(s) = 5+ 2 = 2253 (11.23)
s S

Hence, by taking Laplace transforms, the pair of simultaneous differential equations
(11.20) and (11.21) in x(¢) and y(¢) has been transformed into a pair of simultaneous
algebraic equations (11.22) and (11.23) in the transformed variables X(s) and Y(s).
These algebraic equations may now be solved simultaneously for X(s) and ¥(s) using
standard algebraic techniques.

Solving first for X(s) gives

257+ 145 +9
X(s) = el LI

s(s+2)(s—1)
Resolving into partial fractions,

9 u 23

Xs:_i_ 6 + 3
(s) s s+2 s-1

which on inversion gives

w0 = -3 - He+ B! (1= 0) (11.24)

6
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Likewise, solving for Y(s) gives

Vs = $3 =222 -395 - 15
Y s+ Ds+ (s 1)

Resolving into partial fractions,

1 11 25
42 42 2
s+1 s+2 s-1

[~
73

) |N\j‘,

Y(s) =

+

which on inversion gives

yn=L+le’+der-Fe' (1=0)

Thus the solution to the given pair of simultaneous differential equations is

Q -
x(t) = =53 — He ¥+ Le

15 11 25 (r 20)
5 - ; :
y(f)=7+‘7el+732’—731

Note: When solving a pair of first-order simultaneous differential equations such.
and (11.21), an alternative approach to obtaining the value of y(¢) having obt:
is to use (11.20) and (11.21) directly.

Eliminating dy/dr from (11.20) and (11.21) gives

d
2y=—x—4x—3+e”
dt

Substituting the solution obtained in (11.24) for x(¢) gives
2y=(He ¥+ Fe) —d(—5 —Le ¥+ L)' -3 +e”
leading as before to the solution
y=Y+lery e Be

A further alternative is to express (11.22) and (11.23) in matrix form and solve fo
and Y(s) using Gaussian elimination.

In principle, the same procedure as used in Example 11.26 can be employed to sols
a pair of higher-order simultaneous differential equations or a larger system of di
ential equations involving more unknowns. However, the algebra involved can becom
quite complicated, and matrix methods’ are usually preferred.

113.6 Exercise

6  Using Laplace transform methods, solve for dx dy 3
¢ = 0 the following simultaneous differential @) zd_, B Zd_, ~dy=e
equations subject to the given initial conditions. dx dy
(Readers are encouraged to check their 2—+4—+4x-37y=0
solutions using an appropriate software dr

package.) subject tox=0and y=1 atr=0
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d dy dx dy
b 429 4 vy = 56ing (0 22 43 T =140+ 7
dt d¢ dt ds
dx dy
2—+'§—+\—v=e dr . dy
di de Sd[ 3d +4x +6y=14/— 14
subjecttox=0and y=0atr=
subject to.x and y=0a 0 subjecttox=y=0at+t=0
d d
(©) —\+-y—+2x+):e’3’ diy
dedr (hy — =y —2x
d d¢
—y+5.\‘+3y:5e’2’ .
dr L v -y
subjecttox=—landy=4at(=0 des
) 1 ,724, ::2’ xX/dt = ! = 3
) ,;d_\ ’%dA)—2x=e’ subject to x y dx/dt =0 and dy/dr = 0 at
dr T ds t=0
d 1y
_\+2(_)_ =1 (1) d X d -0
d¢ dt d[»
subjecttox=1landy=1at¢=0 dix 1) o
d d -
(e) 3 * Y o= 3sing + Scost e
dl dl
dr dv subject tOA—} 1, dx/dt = 0 and
R A y =sint + cos! dy/dt=0att=0
dede
2 "
subjecttox=0and y=—1 attr=0 (i zd _ﬂ_d_A_i_zy Oy
de? dir de e
(f) d—x+d—)+y {
de o dr 2(:\ 2)’ ZX +?:5)x~7x
' { t t t
d\ 4d—)+ =1
dl d¢

subjecttox=1and y=0atr=0

subject to x =dv/dt =1 and y = dy/dr =0 at
=0




954 ANSWERS TO EXERCISES

(©)
(d)
(e)
()
(2)
(b
(1)
()
(k)
@
(m)
(n)

(o)

4 (a)

(e)
(8)
)]
(k)
O]
(m)
(0)
(@
()

5 (a)
(b)
(c)
(d)
(e)
()
(g)
(h)

3s-2

2

52

4
+ ,—s, Re(s) > 0
st +4

s
, Re(s) >3
5 Re(®

3

T Re(s) > 2
> +§— 25 , Re(s) >0
s+2 s s*+4
4
(s+2)"
4
s+ 65+ 13
2
(s + 4
36 — 65 + 452 - 25°
st
2s +15
S+ 9
st —4
(s + 42’
1852 — 54
(s1+9)°°
2 3s
s sP+16
2 s+1

+ 2
s+ 25 +5

Re(s) > -2

Re(s) > -3

Re(s) > -4

, Re(s) >0

, Re(s) >0

Re(s) > 0

Re(s) > 0

, Re(s) >0

+ E, Re(s) > 0
$

(b) —e7'+ 2"

(d) 2cos2t + 3sin2t

(f) e¥(cost + 6sint)

(h) e —e”' =2t

3t

%(673/ _ eJI)
T
(41 — sin4dy)
+(1 —ecos 2t + 3e¥sin21)
e(cos2t + 3sin2t) (j) +e' —3e¥ + e
—2¢ '+ 2cos(V21) — N sin(V2¢)

le'— le(cost — 3siny)

e'(cos 2t — sin2t) (n) te¥ —2e¥ + 3e ¥

—e'+3e?—Le®  (p) 4—Zcost+LcosH

9e ¥ — e [7 cos($V31) — V3 sin($V31)]
1 ,-r

e — ke — Le7'(cos 3t + 3sin 3n)

x(=eH+e

x(t) = 2e* — £(cos2t + 2sin2s)

x() =

¥ = £(12e7+ 30te™ — 12cos 2t + 16 5in 2¢)
x(t)=—Te'+de¥ + Le¥
x(1) = e ¥(cost + sint + 3)

x() =3¢ —te ¥ + Le(cos 2t — 3sin2f)
y() = =% + 1 + e '[cos(N2r) + yLsin(V20)]

(1 —e"cos2t —+e7sin2r)

(i) x(N=@F+ne? + e+ -2+ 447
(J) x(t)y =1 —LteP(cosit + 2sindr)
(k) x(1)=te—fcosdt

() yoy=e'+20e
) ¥ =3+ 3 — '+ Fe

(n)

2 ~t

2
_Te

—i

x(1) = 5™ — L cost + Zsint — g5 cos 3

3
— gosin 3t

6 () x(t) = (Fe¥ — el —e™), y(1) = §(3e* — &)

(b) x(f)=5sint+5cost —e' —e¥ -3
y(£)y=2¢' — Ssint +e¥ -3
(c) x(fy=3sint—2cost +e%
y(t) = —1sint + Scost — Je
(d) x(t)=3e"— L&', y(t) = -1 + Le' + e
(e) x(t)=2¢' +sint—2cost
y(£) =cost —2sint — 2¢'
) x(h)=-3+¢e +3e"
yiy=t—1-%e'+ 3"
(g) x()=21—¢e'+e, y()=1~2 +3e'+ e
(h) x(t) =3cost + cos(\/3t)
y()=3cost — cos(V3r)
(i) x(0) = cos(x) + < cos(V6r)
¥(1) = 3 cos(v5t) ~ L cos(N6r)
(j) x(1)=4e' +3cos2t + +sin2t
y()=2e' — 2cos2t — Lsin2s

E (50 + s)s
7 I(s) = '
) = 109G + 1007
L(s) ks

T+ 10°)(s + 100)°
L{(t) = E(—gze '™ + $1e'%" + 5= cos 1001)

9 i,(1) = 20/ e " sin(IN7r)

10 x, (1) = == cos(¥3t) — 72 cos(V13t)
X, (1) = =+ cos(V3t) + £ cos(V13), V3, V13

11.5 Review exercises

1 (a) x.(t) =cost + sint — e ¥(cost + 3sin¢)
(b) x(t)=-3+ Ye' + L2

2 (a) e’ —+4e™ —Le(cost +sinr)
(b) i(t) =4e™— 3™

+V[e" —te ¥ — Le(cost + sint)]

3 x(4)=—t+ 5sint —2sin2,
y(t) =1—2cost +cos2t

4 L(cost+2sint)
e7[(x — B)cost + (x;, + X, — 2)sint]
+,63.4° lag



